
22. Variational Principles and Partial 
Differential Equations 

Diriehlet's prineiple eonsists in eonstrueting harmonie functions by minimizing the 
Dirichlet integral in an appropriate dass of funetions. This idea is generalized, and 
minimizers of variational integrals are weak solutions of the assoeiated differential 
equations of Euler and Lagrange. Several examples are diseussed. 

We shall first eonsider a special example, in order to make prominent 
the basie idea of the following eonsiderations. The generalization of these 
refleetions will then later present no great diffieulty. 

The equation to be treated in this example is perhaps the most important 
partial differential equation for mathematies and physies, namely the Laplace 
equation. 

In the following, n will be an open, bounded subset of IRd. A function 
f : n --+ IR is said to be harmonie if it satisfies in n the Laplace equation 

a2 f(x) a2 f(x) 
tlf(x) = (ax1 )2 + ... + (axd )2 = o. 

Harmonie functions oeeur, for example, in eomplex analysis. If n c C and 
z = x + iy E n, and if fez) = u(z) + iv(z) is holomorphie on n, then the 
so-ealled Cauehy-Riemann differential equations 

au av au 
ax ay' ay 

av 
ax 

(1) 

hold, and as a holomorphie function is in the dass Coo, we ean differentiate 
(1) and obtain 

and similarly 
a2v a2v 
ax2 + ay2 = O. 

Thus the real and imaginary parts of a holomorphie function are harmonie. 
Conversely, two harmonie funetions whieh satisfy (1) are ealled eonjugate 

and a pair of eonjugate harmonie functions gives preeisely the holomorphie 
function f = u + iv. 
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In case (1) holds, one can interpret (u(x, y), -v(x, y)) as the velo city field 
of a two dimensional rotation-free incompressible fluid. For d = 3 the har­
monie functions describe likewise the velocity field of a rotation-free incom­
pressible fluid, as weH as electrostatie and gravitational fields (outside at­
tracting or repelling charges or attracting masses), temperature distribution 
in thermal equilibrium, equilibrium states of elastic membranes, etc. 

The most important problem in harmonie functions is the Diriehlet prob­
lem: Here, a function 9 : an -t IR is given and one seeks I : n -t IR with 

.t1/(x) = 0 for x E n (2) 

I(x) = g(x) for x E an. 

For example, this models the state of equilibrium of a membrane whieh is 
fixed at the boundary of n. 

There exist various methods to solve the Dirichlet problem for harmonie 
functions. Perhaps the most important and general is the so-called Diriehlet 
principle, whieh we want to introduce now. 

In order to pose (2) sensibly, one must make certain assumptions on n 
and g. For the moment we only assurne that 9 E W 1,2(n). As already said, 
n is an open and bounded subset of IRd. Further restrictions will follow in 
due course in our study of the boundary condition I = 9 on an. 

The Dirichlet principle consists in finding a solution of 

.t11 = 0 in n 
1= 9 on an (in the sense that 1- gE H6,2(n)) 

by minimizing the Diriehlet integral 

~ f IDvl2 (here Dv = (D1v, ... DdV )) 

{} 

over all v E Hl,2(n) for which v - gE H6,2(n). 
We shall now verify that this method really works. 
Let 

m:= inf{~ f IDvI2 : v E H 1,2(n),v - gE H6,2(n)}. 
{} 

We must show that m is assumed and that the function for whieh it is assumed 
is harmonie. (Notation: By coroHary 20.10, W 1,2 = H 1,2 and in the sequel 
we shall mostly write Hl,2 for this space.) 

Let (fn)nEN be a minimizing sequence, so In - gE H6,2(n) and 

By corollary 20.16 we have 
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II/nllL2(a) ::; IIglIL2(a) + II/n - gllL2(a) 
::; IIgllL2(a) + const. IID In - DglIL2(a) 

::; IIglIL2(a) + cIIiDglIL2(a) + c211D InllL2(!J) 

::; const. + C2 IIDlnllL2(a), 

as 9 has been chosen to be fixed. 
Without loss of generality let 

IID Inlli2(a) ::; m + 1. 

It follows that 

Il/nIlHl.2(a)::; const. (independent of n). 

By theorem 21.8 In converges weakly, after a choice of a subsequence, to an 
I E Hl,2(n) with I - 9 E H~,2(n) (this follows from corollary 21.12) and 
corollary 21.9 gives 

! IDI12 ::; liminf! IDlnl2 = 2m. 
n-too 

a a 

By the theorem of Rellich (theorem 20.20) the remaining term of Il/nll~f1.2' 
namely J I/nl2 is even continuous, so J 1/12 = lim J I/nl2 , after choosing a 

a n-too a 
subsequence of (fn). 

Because of I - 9 E H~,2(n), it follows from the definition of m that 

! IDI1 2 = 2m. 
a 

FUrthermore, for every v E H~,2, t E IR we have 

m::; ! ID(f + tvW = ! IDI1 2 + 2t ! DI· Dv + t2 ! IDvl 2 

a a a a 
d 

(where D I· Dv := E Dd· Div) and differentiation by t at t = 0 gives 
i=l 

0= !!ID(f+tvW1t=o=2! DI·Dv 
a a 

for all v E H~,2(n). 
By the way, this calculation also shows that the map 

E : H 1,2(n) -t IR 

I f-t ! IDI1 2 

a 
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is differentiable, with 

DE(f)(v) = 2 ! Df· Dv. 

[} 

Definition 22.1 A function f E Hl,2(D) is ealled weakly harmonie or a 
weak solution of the Laplaee equation if 

! Df·Dv=O forallvEH~,2(D). 
[} 

(3) 

Obviously, every harmonie function satisfies (3). In order to obtain a har­
monie function by applying the Diriehlet principle, one has now to show eon­
versely that a solution of (3) is twiee eontinuously differentiable and therefore, 
in partieular, harmonie. This will be aehieved in §23. 

However, we shall presently treat a more general situation: 

Definition 22.2 Let cp E L 2(D). A function f E H 1 ,2(D, is ealled a weak 
solution of the Poisson equation (iJ.f = cp) if for all v E Ho,2(D) 

! D f . Dv + ! cp. v = 0 (4) 
[} [} 

holds. 

Remark. For a preassigned boundary value 9 (in the sense of f - 9 E H~,2 (D)) 
a solution of (4) ean be obtained by minimizing 

~ ! IDwl 2 + ! cp' w 
[} [} 

in the dass of all w E H 1 ,2(D) for whieh w - 9 E H~,2(D). One notiees that 
this expression is bounded from below by the Poineare inequality (eorollary 
20.16), as we have fixed the boundary value g. 

Another possibility of finding a solution of (4) for a preassigned f - 9 E 
H~,2 is the following: 

If one sets w := f - 9 E H~,2, then w has to solve 

! Dw· Dv = - ! cp' v - ! Dg· Dv (5) 
[} [} [} 

for all v E H~,2. 
The Poineare inequality (eorollary 20.16) implies that a sealar produet on 

H~,2(D) is already given by 
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((f,v)) := (DI, Dv)p(JJ) = J DI· Dv. 

JJ 
With this scalar product, H6,2(D) becomes a Hilbert space. Furthermore, 

J cp' v ~ Ilcpllp '1lvllp ~ const. Ilcpllp ·IIDvllp, 
JJ 

again by corollary 20.16. It follows that 

Lv := - J cp' v - J Dg· Dv 
JJ JJ 

defines a bounded linear functional on H6,2(D). By theorem 21.6 there exists 
a uniquely determined w E H6,2(D) with 

((w, v)) = Lv for all v E H6,2, 

and w then solves (5). 

This argument also shows that a solution of (4) is unique. This also follows 
from the following general result. 

Lemma 22.3 Let /i, i = 1,2, be weak solutions 0111/i = CPi with h - h E 
H6,2(D). Then 

In particular, a weak solution 01111 = cP, 1 - 9 E H~,2(D) is uniquely deter­
mined by 9 and cp. 

Proof. We have 

J D(h - h)Dv = - J (CPl - CP2)V 
JJ JJ 

for all v E H6,2(D) and therefore in particular 

J D(h - h)D(h - 12) = - J (CPl - CP2)(h - 12) 
JJ JJ 

~ Ilcpl - cp21Ip(JJ) Ilh - hIIL2(JJ) 

~ const. Ilcpl - cp21Ip(JJ) liD h - D h IIP(JJ) 
by corollary 20.16, and consequently 
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The assertion follows by another application of corollary 20.16. o 

We have thus obtained the existence and uniqueness of weak solutions of 
the Poisson equation in a very simple manner. 

The aim of the regularity theory consists in showing that (for sufficiently 
weIl behaved cp) a weak solution is already of dass C2 , and thus also a dassical 
solution of 111 = cp. In particular we shall show that a solution of 111 = 0 is 
even of dass COO(n). 

Besides, we must investigate in which sense, if for example an is of dass 
c oo - in a sense yet to be made precise - and 9 E COO(n), the boundary 
condition 1 - gE H5,2(n) is realized. It turns out that in this case, a solution 
of 111 = 0 is of dass coo and for all x E an I(x) = g(x) holds. 

We shall now endeavour to make a generalization of the above ideas. For 
this we shall first summarize the central idea of these considerations: 

In order to minimize the Dirichlet integral, we had first observed that 
there exists a bounded minimizing sequence in Hl,2. From this we could 
then choose a weakly convergent subsequence. As the Dirichlet integral is 
lower semicontinuous with respect to weak convergence the limit of this se­
quence then yields aminimum. Thus, with this initial step, the existence of a 
minimum is established. The second important observation then was that a 
minimum must satisfy, at least in a weak form, a partial differential equation. 

We shall now consider a variational problem of the form 

I(f) := J H(x, I(x), D(f(x)))dx --+ min. 

n 

under yet to be specified conditions on the real valued function H; here n is 
always an open, bounded sub set of jRd and 1 is allowed to vary in the space 
Hl,2(n). 

Similar considerations could be made in the spaces H1,p(n), but we have 
introduced the concept of weak convergence only in Hilbert and not in general 
Banach spaces. 

Theorem 22.4 Let H : n x jRd --+ jR be non-negative, measurable in the first 
and convex in the second argument, so H(x, tp+ (1- t)q) :S tH(x,p) + (1- t) 
H(x, q) holds for alt xE n, p, q E jRd and 0 :s t :S l. 

For 1 E H 1,2(n) we define 

Then 

I(f):= J H(x,DI(x))dx:S 00. 

n 

is convex and lower semicontinuous (relative to strang convergence, i.e. if 
(fn)nEN converges in H 1 ,2 to 1 then 
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f(f) ~ liminf f(fn)). 
n-too 

(As H is continuous in the second argument (see below) and D fis mea­
surable, H(x,Df(x)) is again measurable (by corollary 17.12), so f(f) is 
well-defined). 

Proof. The convexity of f follows from that of H, as the integral is a linear 
function: Let f,g E H 1,2(fl),0 ~ t ~ 1. Then 

f(tf + (1 - t)g) = ! H(x, tD f(x) + (1 - t)Dg(x))dx 

n 

~ ! {tH(x, Df(x)) + (1- t)H(x, Dg(x))}dx 

n 
= tI(f) + (1 - t)f(g). 

It remains to show the lower semicontinuity. Let (fn)nEN converge to f 
in H 1,2. By choosing a subsequence, we may assume that liminf f(fn) = 

n-too 
lim f(fn)' By a further choice of a subsequence, D fn then converges point-

n-too 
wise to D f almost everywhere. By theorem 19.12 this follows from the fact 
that D fn converges in L2 to D f. As H is continuous in the second variable 
(see lemma 22.5 infra), H(x,Dfn(x)) converges pointwise to H(x, Df(x)) 
almost everywhere on fl. By the assumption H ~ 0 we can apply Fatou's 
lemma and obtain 

f(f) = J H(x, D f(x))dx = J J~~ H(x, D fn(x))dx 
n n 

~ liminf!H(x,Dfn(X))dX 
n-too 

n 
= liminf f(fn)' 

n-too 

(As lim f(fn) = lim inf f(fn) , by choice of the first subsequence, lim inf f(fn) 
does not change anymore in choosing the second subsequence). Thereby, the 
lower semicontinuity has been shown. 0 

We append further the following result: 

Lemma 22.5 Let <p : IRd -t IR be convex. Then <p is continuous. 

Proof. We must control the difference l<p(y + h) - <p(y) I for h -t O. We set 
f := ~ (we may assume h:f. 0) and choose t E [0,1] with 

h = (1- t)f. 
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By convexity, we have 

<p(ty + (1 - t)(y + i)) ::; t<p(y) + (1 - t)<p(y + i) 

so 
<p(y + h) ::; t<p(y) + (1 - t)<p(y + i), 

and therefore 

1-t 
<p(y + h) - <p(y) ::; -t-( -<p(y + h) + <p(y + i)). (6) 

The convexity of <p also gives 

<p(y) ::; t<p(y + h) + (1 - t)<p(y - tf), 

so 
1-t 

<p(y + h) - <p(y) 2:: -t-(<p(y) - <p(y - tf». (7) 

We now let h approach 0, so t -+ 1, and obtain the continuity of<p at y from 
(6) and (7). 0 

We now prove 

Lemma 22.6 Let A be a convex subset 01 a Hilbert space, f : A -+ lRU {±oo} 
be convex and lower semicontinuous. Then f is also lower semicontinuous 
relative to weak convergence. 

Proof. Let Un)nEN C A be weakly convergent to 1 E A. We then have to 
show that 

fU) ::; liminf fUn). 
n-too 

(8) 

By choosing a subsequence, we may assume that fUn) is convergent, say 

liminfIUn) = lim fUn) =: w. 
n-too n-too 

(9) 

By choosing a further subsequence and using the Banach-Saks lemma (corol­
lary 21.10) the convex combination 

1 k 

gk := k 2: IN+v 
v=l 

converges strongly to 1 as k -+ 00, and indeed for every N E N. 
The convexity of f gives 

(10) 

Now we choose, for c: > 0, N so large that for all l/ E N 



22. Variational Principles and Partial Differential Equations 289 

I(fN+v) < w + c 

holds (compare (9)). By (10) it then follows that 

limsupI(gk) :::; w. 
k .... HXl 

The lower semicontinuity of I relative to strong convergence now gives 

I(f) :::; liminf I(gk) :::; limsupI(gk) :::; w = liminf I(fn). 
k-too k-too n-too 

Thereby (8) has been verified. 

We obtain now the important 

o 

Corollary 22.7 Let H : !1 x IRd -+ IR be non-negative, measurable in the first 
and convex in the second argument. For f E H 1,2(!1), let 

I(f) := ! H(x,Df(x))dx. 
{1 

Then I is lower semicontinuous relative to weak convergence in H 1,2. 

Let A be a closed convex subset of H 1,2(!1). 
If there exists a bounded minimizing sequence (fn)nEN CA, that is, 

I(fn) -+ inf I(g) with IlfllHl,2 :::; K, 
gEA 

then I assumes its minimum on A, i. e. there is an f E A with 

I(f) = inf I(g). 
gEA 

Proof. The lower semicontinuity follows from theorem 22.4 and lemma 22.6. 
Now let (fn)nEN be a bounded minimizing sequence. By theorem 21.8, after 
choosing a subsequence, the sequence fn converges weakly to an f, which by 
corollary 21.12 is in A. Due to weak lower semicontinuity it follows that 

I(f) :::; liminf I(fn) = inf I(g), 
n-too gEA 

and, as trivially inf I(g) :::; I(f) holds, the assertion folIows. 
gEA 

Remarks. 

o 

1) In corollary 22.7, H depends only on x and Df(x), but not on f(x). 
In fact, in the general case 

I(f) = ! H(x, f(x), D f(x))dx 
{1 
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there are lower semicontinuity results under suitable assumptions on 
H, but these are considerably more difficult to prove. The only ex­
ception is the following statement: 
Let H : il x IR X IRd -+ IR be measurable in the first and jointly convex 
in the second and third argument, i.e. for x Eil, J, 9 E IR, p, q E 
IRd ,0 ::::; t ::::; 1 one has 

H(x, tJ + (1 - t)g, tp + (1 - t)q) ::::; tH(x, J,p) + (1 - t)H(x, g, q). 

Then the results of corollary 22.7 also hold for 

I(J) := f H(x, J(x), D J(x))dx. 
{} 

The proof of this result is the same as that of corollary 22.7. 

2) Weak convergence was a suitable concept for the above considerations 
due to the following reasons. One needs a convergence concept which, 
on the one hand, should allow lower semicontinuity statements and 
so should be as strang as possible, and on the other hand, it should 
admit a selection principle, so that every bounded sequence contains 
a convergent subsequence and therefore should be as weak as possible. 
The concept of weak convergence unites these two requirements. 

Example. We now want to consider an important example: 
For i, j = 1, ... ,d, let aij : il -+ IR be measurable functions with 

d 

I: aij(x)~i~j 2:: ),1~12 
i,j==l 

for all x Eil, ~ = (e , ... ,~d) E IRd , with a ), > o. 
The condition (11) is called an ellipticity condition. 

We consider 

d 

I(J) := f .~ aij(x)Dd(x)DjJ(x)dx 
{} ',3==1 

for J E H 1,2(il). 
We shall also assume that 

esssup laij(x)1 ::::; m. 
zEn 

i.j=l •... d 

Then I(f) < 00 for all J E H 1,2(il). 
By (11) and (12), 

(11) 

(12) 
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A ! IDf(xWdx::; l(f) ::; md! IDf(x)1 2dx (13) 
n n 

holds. 
We now observe that 

is bilinear, symmetrie and positive semi-definite (so (f, f) 2: 0 for all f) on 
H1,2(D). Therefore the Schwarz inequality holds: 

(f,g) ::; l(f)! . leg)!· 

It now follows easily that I is convex: 

thus 

d 

l(tf + (1- t)g) = ! .~ aij(x)(t2Dd(x)Djf(x) 
n ',J=l 

+ t(l- t)(Dd(x)Djg(x) + Djf(x)Dig(x)) 

+ (1 - t)2 Dig(x)Djg(x))dx, 

l(tf + (1 - t)g) = t2 l(f) + 2t(1- t)(f,g) + (1 - t)2 leg) 

(14) 

::; t2 l(f) + 2t(1- t)l(f)h(g)! + (1- t)2 leg) by (14) 

::; t2 l(f) + t(l - t)(I(f) + leg)) + (1- t)2 leg) 

= tI(f) + (1 - t)l(g). 

Finally, we also observe that if we restriet ourselves to the space H~,2(D), 
then every minimizing sequence for I is bounded. Namely, for f E HO,2(D), 
the Poincare inequality (corollary 20.16) holds: 

Ilfllk1,2(n) ::; c ! IDf(x)1 2 dx where c is a constant (15) 

n 

::; ~l(f) by (13), 

and thereby a minimizing sequence is bounded in H 1,2(D). 
In general, for a fixed 9 E H 1,2(D), we can also consider the space 

The space Ag is closed and convex and for f E Ag we have 
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1I/IIHl,2(.Q) ~ III - gIIHl,2(.Q) + IlgIIHl,2(.Q) 
Cl. 12 

~ (>.l(f - g))2 + IlgIIHl,2(.Q) smce I - gE Ho' (,0) 

~ (~(l(f) + 1(g))2)! + IlgIIHl,2(.Q) 

(using the triangle inequality implied by the Schwarz inequality for I (f)! = 
(I, f)!) 

eIe 1 
= (>.)'il(f) + (>.)'il(g) + IIgIlHl,2(.Q). 

As 9 is fixed, the H1,2-norm for a minimizing sequence for 1 in Ag is again 
bounded. 

We deduce from corollary 22.7 that 1 assumes its minimum on Ag, Le. for 
any gE H 1,2(,O) there exists an I E H 1,2(,O) with 1- 9 E H~,2(,O) and 

l(f) = inf{l(h) : h E H 1,2(,O), h - 9 E H~,2(,O)}. 

This generalizes the corresponding statements for the Dirichlet integral. In 
the same manner we can treat, for a given <p E L2 (,O) 

d 

J(f) = ! (~ aij(x)Dd(x)Djl(x) + <p(x)/(x)) dx 
.Q >,1=1 

and verify the existence of a minimum with given boundary conditions. 
However, not every variational problem admits aminimum: 

Examples. 
1) We consider, for I : [-1, 1]-t ]R 

1 

l(f):= ! (f'(X))2 X4 dx 
-1 

with boundary conditions f( -1) = -1, f(l) = 1. Consider 

{
-I for -1 < x < - 1. 

In(x) = nx for -~ -;; x ~ ( 
1 for 1. < x < 1 n -

Then lim l(fn) = 0, but for every I we have l(f) > O. Thus the 
n-too 

infimum of l(f), with the given boundary conditions, is not assumed. 

2) We shall now consider an example related to the question of realiza­
tion of boundary values: 
Let ,0:= U(O, 1)\{0} = {x E]Rd : 0 < Ilxll < 1},d ~ 2. 
We choose 9 E C1 (,O) with 
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g(x) = 0 for Ilxll = 1 

g(O) = 1 

We want to minimize the Dirichlet integral over 
Ag = {f E H 1 ,2({}) : f - 9 E H~,2({})}. Consider, for 0 < c < 1, 
(r = IIxll), 

{ 
1 for 0 < r < c 

fE(r):= log(r) for c :;: r < 1 . 
log(E) -

By the computation rules given in §20, fE(r) is in H~,2({}) and 

! IDfE(r)1 2 dx = (10:c)2 ! r~dX 
n E::; r::; 1 

1 

= dwd ! rd
-

1 dr 
(logc)2 r 2 

(theorem 13.21) 

{ 1;;1 for d = 2 

= {~(1 - cd- 2 ) for d > 2 
~d-2 

It follows that 

and thereby 

lim! IDfEI 2 = 0, 
E--tO 

n 

inf{! IDf1 2 ,f E Ag} = O. 

n 
Now, it follows from the Poincare inequality (corollary 20.16) as usual 
that for a minimizing sequence (fn)nEN C Ag 

IIfnllHl,2 -+ 0 for n -+ 00. 

Thus fn converges in Hl,2 to zero. So the limit f == 0 does not fulfil the 
prescribed boundary condition f(O) = 1. The reason for this is that 
an isolated point is really too small to play a role in the minimizing 
of Dirichlet integrals. We shall later even see that there exists no 
function h at all such that 

h: B(O, 1) -+ IR, .::1h(x) = 0 for 0 < IIxll < 1, 

h(x) = 0 for IIxll = 1 and h(O) = 1 

(see example after theorem 24.4). 
The phenomenon which has just appeared can be easily formulated 
abstractly. 

Definition 22.8 Let {} be open in ~d, K C {} compact. We define the 
capacity of K with respect to {} by 
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capn(K) := inf{! ID 112 : 1 E Hf/(n), 12:: 1 on K}. 

n 

So the capacity of an isolated point in ]Rd vanishes for d 2:: 2. 

In general we have 

Theorem 22.9 Let n c ]Rd be open, K c n compact with capn(K) = O. 
Then the Dirichlet principle cannot give a solution of the problem 

1 : n\K -+]R 

L11(x) = 0 for x E n\K 

I(x) = 0 for x E an 

I(x) = 1 forx E aK. 

For an arbitrary A c none can also define 

capn(A) := sup cap (K) 
KCA 

K compact 

o 

(as for an A with e.g. vol(A) = 00 there is no 1 E H~,2(n) with 1 2:: Ion 
A, we cannot define the capacity directly as in definition 22.8). 

We shall now derive the so-called Euler-Lagrange differential equations as 
necessary conditions for the existence of a minimum of a variational problem. 

Theorem 22.10 Consider H : n x ]R x ]Rd -+ lR, with H measurable in the 
first and differentiable in the other two arguments. We set 

1(1) := ! H(x, I(x), D I(x))dx 
{} 

for 1 E H 1,2(n). Assume that 

IH(x,j,p)l:s cllpl2 +c21f12 +C3 (16) 

with constants Cl, C2, C3 for almost all x E n and all f E lR, P E ]Rd. (1(1) is 
therefore finite for all fE HI,2(n)). 

(i) Let A C H I,2(n) and let 1 E A satisfy 

1(1) = inf{1(g) : 9 E A}. 

Let A be such that for every <p E CO' (n) there is a to > 0 with 

1 + t<p E A for all t with Itl < to. (17) 
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Assume that H satisfies for almost all x and all f,p 

d 

IHf(x, f,p)1 + L IHp; (x, f,p)1 ~ c41pl2 + cslfl2 + C6 (18) 
i=1 

with constants C4, Cs, C6; here, the subscripts denote partial derivatives 
and p = (PI, ... Pd). Then for all cp E C(f «(}) we have 

d I {Hf(x,f(x),Df(x))cp(x) + ~Hp;(x,f(x),Df(x))DiCP(x)}dx = 0 
a .=1 

(19) 

Under the same assumptions as in (i) assume that even for any 
cp E H~,2«(}) there is a to such that (17) holds. Furthermore, assume 
instead of (18) the inequality 

d 

IHf(x, f,p)1 + L IHp; (x, f,p)1 ~ c71pl + cslfl + C9, (20) 
i=1 

with constants C7, CS, C9. Then the condition (19) holds for all cp E 
H~,2«(}). 

(iii) Under the same assumptions as in (i), let now H be continuously 
differentiable in all the variables. Then, if f is also twice continuously 
differentiable, we have 

d 82 f(x) 
L Hp;p; (x, f(x), D f(x)) . 8xi 8xj 

i,j=l 

d 8f(x) 
+ LHp;f(X,f(x),Df(x)) 8xi + 

i=l 

(21) 

d 

+ L Hpp;;(x, f(x), Df(x)) - Hf (x, f(x), Df(x)) = 0 
i=l 

or, abbreviated, 

d d 
L dx i (Hp; (x, f(x), D f(x)) - Hf (x, f(x), D f(x)) = 0 (22) 
i=l 

(here d~' is to be distinguished from 8~'!)· 

Definition 22.11 The equations (21) are called the Euler-Lagrange equa­
tions of the variational problem I(f) --t min. 
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The equation (21) was first established by Euler for the case d = 1 by 
means of approximation by difference equations and then by Lagrange in the 
general case by a method essentially similar to the one used here. 

Proof of theorem 22.10 
(i) We have 

Now 

I(f) :::; I(f + tcp) for Itl < to· 

I(f + tcp) = ! H(x, f(x) + tcp(x), D f(x) + tDcp(x»dx. 
n 

(23) 

As for cp E CO' (.0), cp and Dcp are bounded we can apply theorem 
16.10 on account of (16) and (18) and concIude that I(f + tcp) is 
differentiable in t for Itl < to with derivative 

! I(f + tcp) = ! {Hf(x, f(x) + tcp(x) , D f(x) + tDcp(x))cp(x) 
n 
d 

+ ~Hpi(X,f(x) +tcp(x),Df(x) +tDcp(x))·Dicp(x)}dx. 
i=1 

From (23) it follows that 

d 
0= dt I(f + tCP)lt=o = 

d ! {Hf(x, f(x), D f(x»cp(x) + ~ HPi (x, f(x), D f(x» . Dicp(x)}dx. 
n .=1 

This proves (i). 
If (20) holds, we can differentiate under the integral with respect to t in 

case cp E H~,2(.o), for then the integrand of the derivative is bounded by 

(c71D f(x) + tDcp(x) I + cslf(x) + tcp(x) I + cg)(lcp(x)1 + IDcp(x)l) 

the integral of which, by the Schwarz inequality, is bounded by 

const. IIf + tCPllHl,2 . IlcpllHl,2. 

Therefore theorem 16.10 can indeed again be applied to justify differentiation 
under the integral sign. Thus (ii) folIows. 

For the proof of (21) we notice that, due to the assumptions of continuous 
differentiability, there exists for every x E .0 a neighborhood U(x) in which 

HPiPi 8;28~" Hpdl!. and Hp,,,,' are bounded. 
For cp E CO'(U(x)) we can then integrate (19) by parts and obtain 
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As this holds for all <p E Cü(U(x)) it follows from corollary 19.19 that the 
expression in the curly brackets vanishes in U (x), and as this holds for every 
xE n, the validy of (21) in n follows. 0 

Remark. By the Sobolev embedding theorem, one can substitute the term 
c21fl 2 in (16) by c2lfl l !2 for d > 2 and by c21flQ with arbitrary q < 00 

for d = 2, and similarly c51fl 2 in (18) etc., without harming the validity of 
the condusions. (Note, however that the version of the Sobolev embedding 
theorem proved in the present book is formulated only for H~,2 and not for 
H 1,2, and so is not directly applicable here.) 

One can also consider more general variational problems for vector-valued 
functions: Let 

H : n x jRc X jRdc -+ jR 

be given, and for f : n -+ JRC consider the problem 

I(f) := ! H(x,f(x),Df(x))dx -+ min. 

n 

In this case, the Euler-Lagrange differential equations are 

d d 
"-d . (Hp,," (x, f(x), D f(x))) - Hf" (x, f(x), D f(x)) = 0 for 0: = 1, ... c L..., x't t 

i=l 

or, written out, 

d C 82 

" "H "pß(x,f(x),Df(x))~fß ~ ~ Pi ; ux'uxJ 
i,j=l ß=l 

C d 8fß 
+ LLHpifß(x,f(x),Df(x)) 8xi 

ß=l i=l 

d 

+ L Hpixi (x, f(x), D f(x)) - Hf" (x, f(x), D f(x)) = 0 for 0: = 1, ... , C. 

i=l 

So this time, we obtain a system of partial differential equations. 
For the rest of this paragraph, H will always be of dass C2 • 
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Examples. We shall now consider aseries of examples: 

1) For a, b E IR, f: [a, b] ---+ IR, we want to minimize the arc length of 
the graph of f, thus of the curve (x, f(x)) C IR2 , hence 

b f }1 + f'(X)2 dx ---+ min. 

a 

The Euler-Lagrange equations are 

o=~ f'(x) 
dx }1 + f'(x)2 

so 

f"(x) 

}1 + f'(X)2 

f"(x) 
- (1 + f'(x)2)~' 

j"(x) = O. 

f'(X)2 f"(x) 

[1 + f'(X)2]~ 

(24) 

Of course, the solutions of (24) are precisely the straight lines, and we 
shall see below that these indeed give the minimum for given boundary 
conditions f(a) = a, f(b) = ß· 

2) The so-called Fermat principle says that a light ray traverses its ac­
tual path between two points in less time than any other path joining 
those two points. Thus the path of light in an inhomogeneous two di­
mensional medium with speed ,(x, J) is determined by the variational 
problem 

b f }1 + f'(x)2 . 
I(f) = ,(x, f(x)) dx ---+ mm. 

a 

The Euler-Lagrange equations are 

o - ~ f'(x) + ,/ VI + f'(X)2 
- dx ,(x, f(x))}1 + f'(x)2 ,2 

f"(x) (f'(x))2 f"(x) ,X f'(x) 
,}1 + f'(x)2 ,(1 + f'(x)2)~ - ,2 }1 + f'(X)2 

_,/ f'(x)2 +,/ }1 + f'(x)2, ,2 }1 + f'(x)2 ,2 

so 
0= j"(x) - 'x j'(x)(1 + j'(x)2) + ,/ (1 + j'(X)2). (25) , , 

Obviously, example 2 is a generalization of example 1. 
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3) The brachistochrone problem is formally a special case of the pre­
ceding example. Here, two points (xo, 0) and (Xl, YI) are joined by a 
curve on which a particle moves, without friction, under the infiuence 
of a gravitational field directed along the y-axis, and it is required 
that the particle moves from one point to the other in the shortest 
possible time. 
Denoting acceleration due to gravity by g, the particle attains the 
speed (2gy) ~ after falling the height y and the time required to fall 
by the amount y = f(x) is therefore 

Xl 

I(j) = J 
Xo 

1 + f'(x)2 
2gf(x) dx. 

We consider this as the problem I(j) -+ min. subject to the boundary 
conditions f(xo) = 0, f(XI) = YI· Setting'Y = J2gf(x), equation (25) 
becomes 

0= f"(x) + (1 + 1'(x)2) 2f~X)' 
We shall solve (26) explicitly. Consider the integrand 

H(j(x), 1'(x)) = 

From the Euler-Lagrange equations 

1 + f'(X)2 
2gf(x) . 

d 
dx Hp - Hf = 0 

it follows, as H does not depend explicitly on X, that 

d ( , )" f' d f" f' dx f . Hp - H = f . Hp + dx Hp - Hp . - Hf . 

= 1'(!Hp - Hf) = 0, 

so l' . Hp - H = const. = c. 

(26) 

From this, l' can be expressed as a function of fand c, and in case l' f- 0, 
the inverse function theorem gives, with l' = <p(j, c), 

J df 
X = <p(j, cr 

In our case 
, 1 

c = f . Hp - H = - J2gf(1 + f'2)' 

so 
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We set 2gc2 f = ~(1- cost), so that f' = 

x =! df =! 1- cost df dt 
f' sint dt 

= 4 12 !(I-cost)dt = 4 1 2(t-sint) +CI. gc gc 
(27) 

Thereby f and x have been determined as functions of t. If one solves (27) 
for t = t(x) and puts this in the equation for f, then one also obtains f(x). 

In the preceding example, we have learnt an important method for solving 
ordinary differential equations, namely, that of finding an expression which 
by the differential equation, must be constant as a function of the indepen­
dent variable. From the constancy of this expression x and f(x) can then be 
obtained as a function of a parameter. One can proceed similarly in the case 
where h does not contain the dependent variable f; then the Euler-Lagrange 
equation is simply 

d 
dxHp = 0 

and therefore Hp = const., and from this one can again obtain f' and then 
x and f(x) by integration. 

All the above examples were concerned with the simplest possible sit­
uation, namely the case where only one independent and one dependent 
variable occured. If one considers, for example, in 1) an arbitrary curve 
g(x) = (gI (x), ... ,ge(x)) in IRe, then we have to minimize 

f(g) = f IIg'(x)lIdx = f (t(!9i(X))') ! dx, 

and we obtain as the Euler-Lagrange equations 

11 e ( 1)2 I C I 11 g. E g. - g . . E g.g. 
• j=l J • j=l J J 

e !! (E(gl.)2)2 
j=l J 

for i = 1, ... , c. (28) 

From this, one can at first not see too much, and this is not surprising as we 
had already seen earlier that the length [(g) of the curve g(x) is invariant 
under reparametrizations. Thus, if x I-t g(x) is a solution of (28) then so is 
'Y(t) := g(x(t)) for every bijective map t I-t x(t). In other words, there are 
just too many solutions. On the other hand, we know that for a smooth curve 
9 we can always arrange Ilftg(x(t))11 == 1 by a reparametrization x = x(t). 
The equations (28) then become 
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!(!9i(X(t))=0 fori=l, ... ,c, 

and it follows that g(x(t)) is a straight line. Then g(x) is also a straight line, 
only here g(x) does not necessarily describe the arc length. 

In physics, stable equilibria are characterized by the principle of minimal 
potential energy, whereas dynamical processes are described by Hamilton's 
principle. In both, it is a question of variational principles. Let a physical 
system with d degrees of freedom be givenj let the parameters be ql, ... , qd. 
We want to determine the state of the system by expressing the parameters 
as functions of the time t. The mechanical properties of the system may be 
described by: 

d 
h k·· T" A ( 1 d t) 'i 'j t e metlc energy = L..J ij q , ... q, q q 

i,j=l 

(thus T is a function of the velocities ql, ... , qd - a point "." always 
denotes derivative with respect to time -, the coordinates ql, ... , qd, and 
time tj often, T does not depend anymore explicitly on t (see below): Here, 
T is a quadratic form in the generalized velocities ql, ... , qd) 

and the potential energy U = U (ql , ... qd, t). 

Both U and T are assumed to be of dass C2 • 

Hamilton's principle now postulates that motion between two points in 
time to and h occurs in such a way that the integral 

h 

I(q) := ! (T - U)dt (29) 

to 

is stationary in the dass of all functions q( t) = (ql (t), ... , qd (t)) with fixed 
initial and final states q(to) and q(tt} respectively . 

Thus one does not necessarily look for a minimum under all motions 
which carry the system from an initial state to a final state, rather only for 
a stationary value of the integral. For a stationary value, the Euler-Lagrange 
equations must hold exactly as for aminimum, thus 

d ßT ß . 
-d ~-!.l"'(T-U)=O for~=l, ... ,d. 

t uq' uq' 
(30) 

If U and T do not depend explicitly on time t, then equilibrium states are 
characterized by all the quantities being moreover constant in time, so in 
particular qi = 0 for i = 1, ... , d, and thereby T = 0, therefore by (30) 

~u. = 0 for i = 1, ... ,d. 
uq' 

(31) 

Thus in astate of equilibrium, U must have a critical point and in order for 
this equilibrium to be stable U must even have a minimum there. 
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We shall now derive the theorem of conservation of energy in the case 
where T and U do not depend explicitly on time (though they depend im­
plicitly as they depend on qi, qi which in turn depend on t). 

By observing that 

d d 
"A ·i ·3' 1" (A A) ·i .). ~ ijq q = 2 ~ ij + ji q q 
i,j==1 i,j==1 

and, if necessary, replacing Aij by HAij + Aji ), we may assume that 

Now 
d 

T = 2: Aij (q1, ... , qd)qiqj 

i,j==1 

U = U(q1, ... ,qd). 

Introducing the Lagrangian 
L=T-U, 

the Euler-Lagrange equations become 

d 
0= dtLqi - Lqi (i = 1, ... ,d). 

As above, one calculates that 

( 
d ) d ) d· i ·.i·i d ··i·i 

dt ?: q Lqi - L =?: (q Lqi + q dt Lqi - Lqi q - Lqi q = 0, 
t==1 t==1 

so 
d 

L qi Lqi - L = const. (independent of t). 
i==1 

On the other hand 

d d d 
2: qi Lqi = 2: 2qi 2: Aikqk = 2T, 
i==1 i==1 k==l 

and it follows that 
2T-L=T+U 

is constant in t. T + U is called the total energy of the system and we have 
therefore shown the time conservation of energy, in case T and U do not 
depend explicitly on t. 

A special case is the motion of a point of mass m in three dimensional 
space; let its path be q(t) = (q1(t),q2(t),q3(t)). In this case 
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and U is determined by Newton's law of gravitation, for example, 

9 
U = -mnqrr 

in case an attracting mass is situated at the origin of coordinates (g = const.) 
We shall now consider motion in the neighborhood of a stable equilibrium. 

Here we will again assume that T and U do not depend explicitly on time t. 
Without loss of generality, assume that the equilibrium point is at t = 0 and 
also that U(O) = 0 holds. As motion occurs in a neighborhood of a stationary 
state, we ignore terms of order higher than two in the qi and qi; thus, we set 

d 

T = L aijqiqj 

i,j=l 

d 

U = L bijqiqj 

i,j=l 

(32) 

with constant coefficients aij, bij . We have therefore substituted U by the 
second order terms of its Taylor series (the first order terms vanish because 
of (31)). In partieular, we can assume bij = bji . By writing 

d 

T ,,1 ( ) ·i ')' = L...J 2 aij + aji q q , 

i,j=l 

we can likewise assume that the coefficients of T are symmetrie. As U is to 
have a minimum at 0, we shall also assume that the matrix 

B-(b .. )·· 1 d - 1,) 1,,]= , ... , 

is positive definite. 
Finally, we also assume that 

A - (a .. )· . 1 d - 1,) 't,)= , ... , 

is positive definite. 
Equation (30) transforms to 

d d 

2:= aijijj + 2:= bijqj = 0 for i = 1, ... , d, (33) 
j=l j=l 

so in vector notation to 
ij + Cq = 0 (34) 
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with the positive definite symmetrie matrix C = A-l B. As C is symmetrie, 
it can be transformed to a diagonal matrix by an orthogonal matrix, hence 

(
Al 

S-lCS =: D = 0 

for an orthogonal matrix S. As C is positive definite, all the eigenvalues 
Al, ... Ad are positive. We set y = S-lq, and (34) then becomes 

Y +Dy = 0, 

thus 
yi + Aiyi = 0 for i = 1,2, ... ,d. (35) 

The general solution of (35) is 

with arbitrary real constants D:i,ßi(i = 1, ... ,d). 
We now come to the simplest problems of continuum mechanics. States of 

equilibrium and motion can be characterized formally as before, however the 
state of a system can no longer be determined by finitely many coordinates. 
Instead of ql(t), ... ,qd(t) we now must determine a (real or vector-valued) 
function f(x, t) or f(x) describing states of motion or rest, respectively. 

First we consider the simplest example of a homogeneous vibrating string. 
The string is under a constant tension J.l and executes small vibrations about 
a stable state of equilibrium. This state corresponds to the segment 0:::; x :::; R. 
of the x-axis and the stretching perpendicular to the x-axis is described by the 
function f(x, t). The string is fixed at the end points and therefore f(O, t) = 
o = f(R., t) for all t. 

Now the kinetic energy is 

f 

T = ~ ! /;dx (p means density of the string), (36) 

o 

and the potential energy is 

f 

U=J.l{! J1+J;dx-R.}, 
o 

thus proportional to the increase in length relative to the state of rest. We 
shall consider a small stretching from the equilibrium position and therefore 
ignore terms of higher order and set, as before, 
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l 

U=~/~~· ~n 
° 

By Hamilton's principle, the motion is characterized by 

tl tl l 

I(f) = 1 (T - U)dt = ~ 11 (pfl- J1.1;)dxdt (38) 
to to 0 

being stationary in the class of all functions with 1(0, t) = I(i, t) = 0 for all 
t. 

The Euler-Lagrange equation is now 

pltt - J1.lxx = O. (39) 

This is the so-called wave equation. For simplicity we shall take p = J1. = 1. 
The weak form of the Euler-Lagrange equation is then 

h l 11 (/t'Pt - Ix'Px)dxdt = 0 for all 'P E Cg"((O,i) x (to, tl)) (40) 

to 0 

(we have not required any boundary conditions for t = to and t = tl and 
therefore this holds even for functions 'P which do not necessarily vanish at 
t = to and t = tl, but this we do not want to investigate here in detail). 

N ow let 'Y E Cl (IR). Then the function 9 defined by 

g(x, t) := 'Y(x - t) 

is in Cl ([O,.e] x [to, tl]) and satisfies 

Therefore, for all 'P E C8"((O,i) X (to,tl)) we have 

h l tl l 11 (gt'Pt - gx'Px)dxdt = 11 (-gx'Pt + gt'Px)dxdt 
~ 0 ~ 0 

tl l 

= 11 g('Ptx - 'Pxt)dxdt = o. 
to 0 

Thus 9 is a solution of (40) although 9 is not necessarily twice differentiable 
and therefore not necessarily a classical solution of the Euler-Lagrange equa­
tion 

Itt - lxx = O. (41) 
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Hence a weak solution of the Euler-Lagrange equation need not necessarily 
be a classical solution. 

In this example, the integrand 

H(P) =P~ -P~ BI BI 
(PI stands for Bx' P2 for Bt) 

is analytic indeed, but has an indefinite Hessian (Hp;p;), namely 

(-2 0) o 2 . 

Moreover, the fact behind this example is that 

g(x, t) = 'Y(x - t) + 8(x + t) 

is the general solution of the wave equation 

gtt - gxx = O. 

H the string is subjected to an additional external force k(x, t) then the 
potential energy becomes 

l l 

U = ~ ! I;dx + ! k(x, t)/(x, t)dx, 
o 0 

and the equation of motion becomes 

pltt - fllxx + k = O. (42) 

Correspondingly, an equilibrium state (assuming that k depends no longer 
on t) is given by 

fllxx(x) - k(x) = O. (43) 

The situation looks similar for a plane membrane - i.e. an elastic surface 
that at rest covers a portion D of the xy-plane and can move vertically. 
The potential energy is proportional to the difference of the surface area to 
the surface area at rest. We set the factor of proportionality as weH as the 
subsequent physical constants equal to 1. H I(x, y, t) denotes the vertical 
stretching of the surface then 

U = ! .)1 + li + I;dxdy - Vol (D). 
n 

(44) 

We shall again restrict ourselves to small pertubations and therefore substi­
tute U as before by I! 2 2 U = 2" (Jx + Iy)dxdy. (45) 

n 
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The kinetic energy is I! 2 T ="2 ftdxdy. (46) 
[} 

The equation of motion is then 

ftt - .:1f = 0 (.:1f = fxx + fyy) (47) 

and its state of rest is characterized by 

.:1f = o. (48) 

We had already derived this earlier. Under the influence of an external force 
k(x), its state of rest is correspondingly given by 

.:1f(x,y) = k(x,y). (49) 

Thus, if the membrane is fixed at the boundary, we have to solve the Dirichlet 
problem 

.:1f(x,y) = k(x,y) for (x,y) E n 
f(x,y) = 0 for (x,y) E ön. 

We shall now derive the Euler-Lagrange equations for the area functional 

I(f) = ! Jl + n + f;dxdy. 
[} 

Setting H(pl,P2) = Jl + pi + p~ we have 

H - Pi 
Pi - Jl + pi + p~ 

and 

(1 + pi + p~)~ 
( { I for i = j ) 

Jij = 0 for i =I- j . 

Thereby, the Euler-Lagrange equations become 

2 1 
0= 2: HPiP;fxixj = (1 j2 j2)~ {(I + f;)fxx 

i,j=l + x + y 

so 
(1 + f;)fxx - 2fxfyfxy + (1 + f;)fyy = O. 

This is the so-called minimal surface equation. It describes surfaces with 
stationary area that can be represented as graphs over a domain n in the 
(x, y)-plane. 

Finally, we consider quadratic integrals of the form 
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d d 

QU) = f {L aij(x)fxifx i + L 2bi(x)f· fxi + c(X)f(X)2 }dx; (50) 
n ',)=1 .=1 

again, without loss of generality, let aij = aji. The Euler-Lagrange equations 
are now 

The Euler-Lagrange equations for a quadratic variation al problem are there­
fore linear in fand its derivatives. 

We shall now study the behaviour of the Euler-Lagrange equations under 
transformations of the independent variables. 

So let ~ t-+ x(~) be a diffeomorphism of fl' ontü fl; we set Dxf 

(/!r, ... , i!a:), Df.x = (~~; kj=l, ... ,d etc. 

By the change of variables in integrals we have 

f H(x, f, DxJ)dx = f p(~, f, Dd)1 det(Df.x)ld~. (52) 

n n' 

We now write für the sake of abbreviation 

(53) 

We then have for cp E CO' (fl), on account of the derivation of Euler-Lagrange 
equations, 

f [HlfCPdx = :t f H(x, f + tcp, Dxf + tDxcp)dxlt=o 
n n 

= ! ! p(~, f + tcp, Dd + tDf.cp) I det(Df.x)ld~lt=o 
n' 

n' 

= ! [PI det(Df.x)lljcpl det(Dx~)ldx. 
n 

As this holds für all cp E CO'(fl) , it füllows, as usual, from corüllary 19.20 
that 

(54) 
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(Under the assumption H E C2 , we consider 

I(f) = ! H(x, fex), D f(x))dx 
f} 

as a function 
I: C 2 (J?) -+ lR 

and [Hlf is then the gradient of I, as the derivative of I is given by 

cp I-t DI(cp) = ![HlfCPdx. 
f} 

Thus equation (54) expresses that the behaviour under transformations of 
this gradient is quite analogous to that of a gradient in the finite dimensional 
case.) 

We shall use this to study the transformation of the Laplace operator; the 
advantage of (54) lies precisely in this that one does not have to transform 
derivatives of second order. Now the Laplace equation, as we have already 
seen at the beginning, is precisely the Euler-Lagrange equation for the Dirich­
let integral. 

So let ~ I-t x(~) be again a diffeomorphism of ft' onto ft; we set 

d öxk öxk 
gij := L Ö~i ö~j 

k=l 

and 

Thus 
d 

'" il 8 ( {I for k = R ) 
~ gikg = kl = 0 for k i:- R . 

Furthermore, let 

Now 

d (ö f ) 2 d d Ö f ö~j ö f Ö~k 
L öxi = L L ö~j öxi Ö~k öxi 
i=l i=l j,k=l 

d 
'" jk öf öf 
.L- 9 ö~j Ö~k . 
J,k=l 

Formula (54) now gives directly, together with (50) and (51), 

(55) 
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This is the desired transformation formula for the Laplace operator. 
For plane polar coordinates 

x = rcoscp,y = rsincp 

one calculates from this 

1 8 8J 8 18J 
6.J(x, y) = -;:(8r (r 8r) + 8cp (-;: 8cp»' (56) 

and for spatial polar coordinates 

x = rcoscpsinB,y = rsincpsinB,z = rcosB 
1 8 2. 8J 8 1 8J 8. 8J 

6.J(x,y,z) = ~B(-8 (r smB-8 ) + -8 (~B-8 ) + 8B(smB 8B )X57) rsm r r cpsm cp 

(cf. §18 for the discussion of polar coordinates). 

Exercises for §22 

1) Let {} C JRd be open and bounded. For J E H 2,2({}), put 

EU) := ! ID2 J(xWdx. 
(} 

(Here, D2 J is the matrix of weak second derivatives DiDjJ, i,j = 
1, ... ,d, and 

d 

ID2J(xW = L IDiDjJ(xW·) 
i,j=l 

Discuss the following variation al problem: For given 9 E H2,2({}), 
minimize EU) in the dass 

Ag := {f EH2,2({}) :J-gEH~,2({}), Dd-DigEH~,2({}), i= 1, ... , d}. 

2) Let H : {} x IR X JRd -+ IR be nonnegative, measurable w.r.t. the first 
variable, and convex w.r.t. the second and third variables jointly, Le. 
for all J,g E JR,p,q E JRd,O::; t::; 1,x E n, we have 

H(x, tJ + (1 - t)g, tp + (1 - t)q) ::; tH(x, J,p) + (1 - t)H(x, g, q). 

For J E H 1,2({}), we put 

1U) := ! H(x, J(x), D J(x»dx. 
(} 
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Show that I is lower semicontinuous w.r.t. weak H1,2 convergence. 

a) Let A be a (d x d) matrix with det(A) i O. Consider the coor­
dinate transformation 

~ f-+ x = Af 
d 2 

How does the Laplacian L1 = ?= (8~'}2 transform under this 
,=1 

coordinate transformation? 
b) Discuss the coordinate transformation (~, 'TJ) f-+ (x, y) with 

x = sin~ cosh 'TJ 

y = cos~sinh'TJ 

(planar elliptie coordinates) and express the Laplacian in these 
coordinates. 

4) Determine all rotationally symmetrie harmonie functions f: ~a \ {O} --+ 
IR. 

5) For m E N, define the Legendre polynomial as 

Show that 
f(r,B) := rmpm(cosB) 

satisfies L1f = 0 (in spatial polar coordinates). 

6) Let a, b E IR, 91,92 > O. For functions f : [a, b] --+ IR with f(a) 
91, f(b) = 92, we consider 

b 

K(f) := 271" J f(x)y'l + f'(X)2dx --+ min. 

a 

(I(f) yields the area of the surface obtained by revolving the graph 
of f about the x-axis. Thus, we are seeking a surface of revolution 
with smallest area with two circles given as boundary.) Solve the cor­
responding Euler-Lagrange equations! 

7) We define a plate to be a thin elastic body with a planar rest position. 
We wish to study small transversal vibrations of such a body, induced 
by an exterior force K. Let us first consider the equilibrium position. 
Let f (x, y) be the vertieal displacement . The potential energy of a 
deformation is 
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where 

U1 = J ((~.1J(X,y))2 + J.L(JxxJyy - f;y))dxdy 
n 

(here, n c ]R2 is the rest position, J.L = const.), 

U2 = J K(x,y)J(x,y)dxdy. 
n 

Derive the Euler-Lagrange equations 

.1(.11) + K = O. 

For the motion, J(x, y, t) is the vertical displacement, and the kinetic 
energy is 

T = ~ J J;dxdy. 
n 

Derive the differential equation that describes the motion of the plate. 


